Hacker Newsnew | past | comments | ask | show | jobs | submit | kovek's commentslogin

I'm wondering how do people come up with these mathematical challenges?

Live out of a suitcase, travel the world, hang out with a wide selection of excellent mathematicians, write joint papers with many of them, when you get bored or stuck, pack the suitcase and keep moving - for your whole life.

I recommend https://happy.engineering/ . It is very easy to set up. I can have an instance in a container which contains my repository and lots of packages/binaries necessary for the work. I can then use the different binaries to run commands in the container. I was able to easily do `ls -la` in the container and email that to myself, all done from my phone. You can also connect it to applescript and whatnot in order to send sms messages, or you can connect to whatsapp. I was able to make it extract the top 5 headlines on hacker news, get the top ideas being discussed in the comments for each submission, and send all of that into my Apple Reminders for me to read on my phone.

No VPN needed.


I'm looking at Opencode and it might be better because it allows you to abort a task. VPN needed.


Is it easy to move the text cursor around in the text input in blink shell?


I usually pair Claude with tmux, so you can move the cursor around the Claude output and copy, scroll, etc. that buffer is definitely the way to go. And within the chat box, Claude respects known eMacs/GNU shortcuts for cursor movement, so I like that more than Copilot.


It's not. When using Claude Code (or similiar)you get a lot of problems in every shell about flickering, not being able to copy, not being able to move text cursor and so on. It's bad UX

If using TMUX you can "ctrl + b [" to enter copy mode and then you can move cursor as you wish. I wrote about this stuff too on https://mjqs.blog/meta/


Yes, I believe thinking can be hampered by depression...


I thought the traffic went pretty well tonight in San Francisco considering we had this major issue.


See the third diagram in https://www.mdpi.com/1424-8220/24/18/6049 . There are elements of noise, of input embeddings in the form of images, or in the form of text.


What does that have to do with all the discussions in the conversation I shared?


I tried to ask a model to tell me what is the "long multiplication algorithm". It gave it to me. I asked it to follow that algorithm to solve eg. 12987318927 * 12098102983, and it followed the algorithm, and it got the right answer. It DOES fail more when the numbers are longer (because it results with more text in the context), but that can be improved by having the model focus on the right subset of the text, right?


> It DOES fail more when the numbers are longer (because it results with more text in the context),

I tried to raise this question yesterday. https://news.ycombinator.com/item?id=45683113#45687769

Declaring victory on "reasoning" based on cherry-picking a correct result about arithmetic is, of course, very narrow and absurdly optimistic. Even if it correctly works for all NxM calculations. Moving on from arithmetic to any kind of problem that fundamentally reduces to model-checking behind the scenes.. we would be talking about exploring a state-space with potentially many thousands of state-transitions for simple stuff. If each one even has a small chance of crapping out due to hallucination, the chance of encountering errors at the macro-scale is going to be practically guaranteed.

Everyone will say, "but you want tool-use or code-gen for this anyway". Sure! But carry-digits or similar is just one version of "correct matters" and putting some non-local kinds of demands on attention, plus it's easier to check than code. So tool-use or code-gen is just pushing the same problem somewhere else to hide it.. there's still a lot of steps involved, and each one really has to be correct if the macro-layer is going to be correct and the whole thing is going to be hands-off / actually automated. Maybe that's why local-models can still barely handle nontrivial tool-calling.


Well, if the model can reliably keep in context CPU cache plus CPU registers plus CPU instructions and is able to do operations based on those, then we pretty much solved computation using LLMs, right? It could use RAG to operate on RAM and SSD.

Here we can see the amount of data a high end traditional non-SOC CPU holds:

> For a recent high-end non-SoC desktop CPU: > Cache: ~40-100 MB total (L1 + L2 + shared L3) > Register files: tens to few hundreds of KB total across cores (e.g., ~200-300 KB or so) > Combined: So you're looking at ~40-100 MB + ~0.2 MB → roughly ~40-100 MB of total on-chip caches + registers.

I'm sure we can reduce these caches to fit in the context windows of today's LLMs (~500,000 tokens).

Then, with temperature 0 we get more "discrete" operations. Now, we still have the rare problem of hallucinations, but it should be small with temperature 0.


It doesn't work like mapping CPU caches/registers into an LLM context. Transformers have no mutable registers, they attend over past tokens and can't update prior state. RAG isn't RAM. Even with huge context, you still can't step CPU style instructions without an external, read/write memory/tooling.

And temperature 0 makes outputs deterministic, not magically correct.


> And temperature 0 makes outputs deterministic, not magically correct.

For reasons I don't claim to really understand, I don't think it even makes them deterministic. Floating point something something? I'm not sure temperature even has a static technical definition or implementation everywhere at this point. I've been ignoring temperature and using nucleus sampling anywhere that's exposed and it seems to work better.

Random but typical example.. pydantic-ai has a caveat that doesn't reference any particular model: "Note that even with temperature of 0.0, the results will not be fully deterministic". And of course this is just the very bottom layer of model-config and in a system of diverse agents using different frameworks and models, it's even worse.


It's partly because floating point math is not associative and GPU inference doesn't guarantee all the steps will be done in the same order.


Well mostly but they can generate more state that can push old state out of context.

If an LLM were sufficiently trained to be able to roll-forward and correctly set the current state of some registers written into the conversation..? I wouldn't trust it though, leaves too much to chance.

I too make mistakes trying to keep track of things, I end up using tools too.


Well, the LLM may re-infer the whole state fully on every instruction. Temperature 0 is deterministic and that's what we are looking for. If the model is trained properly on how the CPU state + instructions should be handled, then it should be able to produce the next state.


With temp = 0 if the model is off by one bit at step k, all subsequent steps are deterministically wrong.

Your previous example shows the best case, which is a model can sometimes follow a textual recipe for long multiplication on short inputs. That's not the same as learning a length generalizing bit exact algorithm.

Basically what you shown is the model can describe the algorithm. It doesn't show it can execute it at scale. Without writable state and bit exact ops, errors grow with length and "focus more" only slows that failure, it doesn’t eliminate it.


> It doesn't show it can execute it at scale. Without writable state and bit exact ops,

Well, modern LLM coding agent products (eg. Claude Code) are able to store state in files in the current repository. So, you could have the model keep the "CPU State", and the files in the repository be the "RAM".

Also, could this https://arxiv.org/html/2402.17764v1 possibly reduce errors when doing inference? There is no floating point operations


It seems to be the conclusion that we come to though, we ourselves use tools.

The focus here is the LLM being able to do it unaided.

The space of all combinations of steps is so large for many problems that require precision and usually one incorrect step breaks everything. "I forgot to carry the 1".

Even then, while brilliant, Claude does screw up sometimes - we're not there yet but it doesn't prevent it from being adequately useful.


There's many different definitions of "AGI" that people come up with, and some include dreaming, quantum world, creativity, and some do not.


With cursor you can hit Cmd+K in the terminal and give a prompt for the agent to convert to a command in the terminal. Would be good if it could allow to do the same to generate SQL queries based on the databases schemas available. Then it would be a generic solution that would cover this use case.


Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: